

	

Who	Will	Read	My	Patterns?		
On	Designing	a	Patterns	Book	for	Target	Readers 	
REBECCA	WIRFS-BROCKS,	Wirfs-Brocks	Associates	
LISE	HVATUM	

As	patterns	authors,	we	spend	a	lot	of	time	writing.	Usually	our	work	is	driven	by	what	we	want	to	share	of	experiences,	working	solutions,	
and	ideas	we	are	excited	about.	But	how	often	do	we	think	about	the	readers	other	than	initially	stating	our	intended	audience?	Who	is	
going	to	consume	our	writing,	and	are	we	really	putting	in	the	effort	to	reach	these	readers	in	the	best	way	possible?		

This	paper	started	because	we	are	two	authors	who	plan	to	make	a	book	from	a	set	of	related	patterns	papers,	and	in	doing	so	we	really	
want	to	reach	our	target	audience	and	provide	a	practical	and	useful	piece	of	work.	Our	approach	had	two	distinct	investigation	activities.	
One	was	to	do	an	informal	analysis	of	books	about	software	processes	and	methods	to	gain	a	better	understanding	of	characteristics	and	
book	design	practices	for	this	kind	of	book.	The	second	was	to	use	a	combination	of	interviews	and	surveys	to	gather	feedback	on	what	
readers	are	looking	for	when	accessing	information	about	software	engineering.		To	better	understand	our	potential	readers	and	how	to	
design	 our	 writing	 for	 their	 consumption,	 we	 created	 personas	 where	 we	 incorporated	 feedback	 from	 the	 reader	 survey	 into	 their	
personalities	and	preferences.	Finally,	we	combined	our	 information	 sources	 to	 create	guidance	 for	our	 future	work	of	 turning	a	 set	of	
patterns	papers	into	a	cohesive	whole.		

Categories	and	Subject	Descriptors:	•General	and	reference~Document	types~General	literature	
General	Terms:	Patterns,	Requirements	

Additional	Key	Words	and	Phrases:	Software	book	design	

ACM	Reference	Format:		

Wirfs-Brock,	R.	and	Hvatum,	L.	2019.	Who	Will	Read	My	Patterns?	On	Designing	a	Patterns	Book	for	Target	Readers.	26th	Conference	on	
Pattern	Languages	of	Programming	(PLoP),	PLoP	2019,	Oct	7-10	2019,	22	pages.	

1. INTRODUCTION	

Since	 2015,	 we	 have	 worked	 on	 a	 collection	 of	 patterns	 for	 creating	 and	 managing	 a	 product	 backlog	 for	
software	 development.	 A	 product	 backlog	 is	 a	 set	 of	work	 items	 that	 constitute	 the	work	needed	 to	 build	 a	
software	 product,	 e.g.	 items	 representing	 features,	 bugs,	 tests,	 etc.	 Our	 work	 is	 focused	 on	 larger	 software	
projects	that	have	backlogs	of	a	size	and	complexity	that	require	digital	tooling	to	manage	them.	At	this	point,	
we	 have	 documented	 the	 patterns	 that	we	 have	 found	 so	 far,	 and	we	 are	 starting	 to	 integrate	 the	 patterns	
papers	presented	at	EuroPLoP	and	PLoP	[Hva2015,	Hva2017,	Wir2016,	Hva2018]	into	a	single,	cohesive	work.		

In	 our	papers	we	deliberately	 experimented	with	different	 techniques	 to	 illustrate	 the	 application	of	 the	
individual	 patterns	 through	 examples.	 In	 one	paper	we	used	 e-mails	 and	 text	messages	 to	 and	 from	a	main	
character.	 In	 other	 papers,	 we	 used	 storytelling	 or	 a	 set	 of	 interconnected	 examples.	 Although	 these	
experiments	seemed	to	work	 in	 individual	papers	(based	on	 feedback	 from	our	pattern	readers	at	PLoP	and	
EuroPLoP	conferences)	we	do	not	really	have	any	good	measures	to	tell	us	what	worked	best.	We	also	do	not	
know	how	these	techniques	will	work	out	for	a	consolidated	group	of	patterns	since	the	work	will	be	so	much	
longer	than	a	typical	patterns	paper.	

Looking	back	over	the	five	years	working	on	these	patterns,	the	whole	process	around	the	pattern	papers	
was	a	massive	learning	process	on	our	part,	with	critical	feedback	from	shepherds	and	workshop	participants.	
Not	 in	 the	 least,	 was	 learning	 how	 to	 effectively	 put	 our	 ideas	 into	 writing	 and	 to	 blend	 our	 experiences.	
Although	we	 believe	 the	 publication	 of	 papers	 significantly	 helped	 us	 to	 clarify	 our	 concepts	 and	make	 the	
work	more	accessible	to	readers,	so	far	we	have	not	really	put	ourselves	into	the	shoes	of	our	intended	reading	
audience.		

Permission	to	make	digital	or	hard	copies	of	all	or	part	of	 this	work	for	personal	or	classroom	use	 is	granted	without	 fee	provided	that	
copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	
To	copy	otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	
this	paper	was	presented	in	a	writers'	workshop	at	the	26th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP'19,	OCTOBER	7-
10,	Ottawa,	Ontario	Canada.	Copyright	2019	is	held	by	the	author(s).	HILLSIDE	978-1-941652-14-5	

Who	Will	Read	My	Patterns?:	Page	-	2	

	

It	is	clear	to	us	that	we	want	and	need	to	spend	time	and	effort	on	designing	our	final	product.	In	doing	so,	
we	want	to	drive	the	structure	and	style	of	our	work	based	on	the	needs	of	our	readers	rather	than	from	our	
desires	and	aspirations	as	writers.	

2. APPROACH	

Starting	from	our	motivation	as	explained	in	the	introduction,	we	decided	to	follow	a	method	adapted	from	the	
user	 experience	 (UX)	 community	 using	 personas	 and	 stories.	 Personas	 are	 fictional	 characters	 created	 to	
represent	 users	 (in	 our	 case	 to	 represent	 readers)	 and	 explore	 their	 needs	 and	 goals,	 as	 well	 as	 their	
personalities	and	behaviors.	Stories	or	scenarios	are	then	created	to	illustrate	use	of	the	product	by	the	defined	
personas.	This	builds	a	better	understanding	of	the	use	of	the	product.	It	also	allows	the	designer	to	get	some	
distance	from	the	product	itself	and	gain	a	broader	perspective	(e.g.	the	persona	is	using	the	product	and	the	
designer	is	“observing”	them).	UX	techniques	are	increasingly	used	to	design	software	products,	and	since	our	
book	is	a	product	in	the	software	domain	this	was	a	natural	way	of	thinking	for	us.	

In	summary,	the	flow	of	events	we	pursued	(and	will	continue	to	pursue)	is	as	follows:	data	collection	and	
analysis	 (research),	 creating	 persona	 descriptions,	 developing	 scenarios	 or	 stories,	 followed	 by	 developing	
design	 prototypes.	 A	 part	 of	 this	 flow	 should	 be	 approvals	 of	 those	 design	 prototypes	 (e.g.	 creating	 a	
hypothesis	with	 a	 design	 and	 testing	 this	 out	 by	 sharing	 our	writing	with	 select	 user	 representatives).	 This	
latter	activity	is	part	of	our	future	work	and	outside	the	scope	of	this	paper.		

We	set	out	to	do	informal	research	in	two	areas:	reviewing	books	in	the	same	domain	as	the	one	we	plan	to	
write,	and	getting	feedback	from	colleagues	and	friends	who	are	readers	and	authors	of	such	books.	We	stress	
the	word	informal,	as	we	are	both	practitioners	and	not	academics.	Our	approach	follows	no	scientific	method.	
Our	fundamental	goal	is	to	gain	a	better	understanding	of	how	books	connect	with	and	bring	value	to	readers,	
and	then	use	this	to	guide	our	own	work.	

The	purpose	of	 the	book	 review	was	 to	 analyze	what	we	 think	 is	 a	 representative	 collection	of	 books	 to	
extract	ideas	from	which	can	help	us	with	our	own	design.	This	may	be	compared	to	apprentices	studying	the	
masters.	To	get	feedback	from	people	we	created	a	survey	with	rather	broad	questions,	and	sent	this	out	to	a	
number	of	contacts.	We	ended	up	with	around	twenty	responses	that	we	then	tried	to	summarize	and	compare	
to	 gain	 further	 insights.	 We	 now	 had	 ample	 materials	 to	 work	 from,	 and	 could	 compare	 the	 readers’	
preferences	with	how	various	authors	had	designed	their	books.	

We	 then	 used	 the	 input	 from	 our	 real	 readers	 to	 adjust	 the	 behavior	 and	 preferences	 of	 the	 personas	
created	to	represent	our	potential	readers,	and	wrote	stories	of	these	personas	reading	our	(so	far	imaginary)	
book	and	using	what	they	read	to	do	their	job.	Finally,	we	created	a	first	outline	of	our	book	and	agreed	on	the	
most	important	principles	of	book	design	that	we	will	apply	for	our	own	writing,	hopefully	creating	a	book	that	
real	readers	will	find	a	decent	piece	of	work.	

To	 keep	 the	 paper	 shorter,	 and	 help	 readability,	 there	 are	 two	 appendices	 to	 this	 paper.	 The	 first	 is	 a	
description	of	the	books	we	used	for	our	research.	The	second	is	a	more	complete	list	of	the	design	principles	
that	we	gleaned	from	our	research.	See,	we	are	applying	our	design	thinking	to	this	paper!	

3. WHAT	WE	LEARNED	FROM	THE	BOOKS	

The	books	that	are	most	relevant	to	our	work	fall	 into	the	category	of	software	processes	and	practices.	Our	
selection	is	a	mix	of	books	that	we	perceive	to	be	fundamental	books	in	our	industry,	as	well	as	recent	writings.	
We	 also	 included	 business/organizational	 books	 often	 referred	 to	 by	 software	 professionals	 because	 they	
describe	practices	 applicable	 to	 software	 companies	 and	organizations.	We	have	 some	writings	 that	 are	not	
full-fledged	books	but	articles.	The	selection	of	books	was	influenced	by	what	we	have	access	to,	but	since	we	
have	 both	 been	 piling	 up	 books	 for	 years	we	 do	 not	 think	 that	 our	 final	 list	was	 too	 limited.	 Several	 books	
mentioned	when	gathering	feedback	from	readers	were	books	we	already	had	selected	for	our	review.	

Let	 us	 first	 introduce	 the	 books,	 before	 discussing	 design	 elements	 and	 solutions	 as	 the	 outcome	 of	 our	
research.	Note	that	a	 lengthier	 introduction	of	the	books	can	be	found	in	Appendix	A.	We	grouped	the	books	
into	 the	 following	 categories:	 fundamental	 books,	 books	 on	 specific	 processes,	 books	 for	 specific	 software	
professions,	books	on	DevOps	(representing	a	hot	topic),	patterns	books,	and	business	books.	

Who	Will	Read	My	Patterns?:	Page	-	3	

	

	

Figure	1	Some	of	the	selected	books	

− Fundamental	 books	 (classics):	 The	Mythical	Man	Month,	 Software	Requirements,	 The	Deadline:	 A	Novel	
about	Project	Management,	Retrospectives	

− Books	on	specific	processes	and	methods:	Extreme	Programming	Explained,	The	Scrum	Guide,	The	Nexus	
Framework,	Large-Scale	Scrum,	Writing	Effective	Use	Cases	

− Books	for	specific	professions:	Code	Complete,	The	Pragmatic	Programmer,	Refactoring,	Software	Systems	
Architecture,	Agile	Testing,	How	to	Break	Software,	Lessons	Learned	in	Software	Testing	

− DevOps	 books	 (representing	 current	 hot	 topics):	 The	 Phoenix	 Project,	 The	 DevOps	 Handbook,	 Site	
Reliability	Engineering,	The	Site	Reliability	Workbook,	Accelerate		

− Business	books:	Agile	and	Lean	Program	Management,	The	Goal,	The	Lean	Startup	
− Patterns	 books:	Design	 Patterns,	 the	 Patterns	 of	 Software	Architecture	 (POSA)	 Series,	 Analysis	 Patterns,	

Domain-Driven	 Design,	 Organizational	 Patterns,	 Fearless	 Change,	 Business	 Patterns	 for	 Software	
Developers	
	

By	no	means	do	we	argue	that	this	is	THE	list	of	books	to	read	(if	you	want	that	list	there	are	several	web	pages	
that	recommend	such	lists.	It	is	simply	the	list	of	books	that	we	ended	up	processing.	We	are	also	not	looking	at	
classifying	 individual	 books	 as	 “good”	 or	 “bad.”	 Every	book	had	 something	 to	 teach	us	 and	 gave	us	 ideas	 of	
book	 design	 practices.	 And	 each	 book	 had	 something	 that	 could	 have	 been	 done	 differently	 and	 arguably	
better,	 although	 that	 judgment	 is	 based	 on	 individual	 readers’	 opinions.	 Finally,	 I,	 Rebecca,	 didn’t	 argue	 for	
including	my	own	books	in	this	list,	although	they	certainly	influence	the	lens	through	which	I	examine	other	
books.	

Technical	books	are	certainly	different	from	novels,	and	while	(we	think)	that	writers	of	fictional	work	are	
in	 the	 profession	 because	 they	 somehow	 enjoy	writing,	 authors	 of	 technical	 books	 are	more	 driven	 by	 the	
desire	to	teach	and	share	knowledge,	possibly	with	a	pinch	of	desire	for	peer	recognition	added	to	the	mix.	The	
wish	to	share	does	not	necessarily	make	one	into	a	good	author,	and	authors	of	technical	books	normally	write	
one	 or	 a	 few	books	while	 spending	most	 of	 their	 time	working	 in	 their	 profession.	 This	may	 be	 one	 reason	
some	books	can	be	a	hard	read	even	if	the	content	is	very	valuable	to	the	reader.	This	brings	us	to	the	problem	
of	 trying	 to	 classify	what	makes	 a	 good	 software	process	book.	 Is	 it	 the	 readability	or	 the	 contents?	 Is	 it	 its	
timeliness	or	its	ability	to	survive	over	time?	We	are	not	trying	to	reach	a	conclusion	to	these	questions	in	this	
paper,	but	rather	to	look	at	elements	and	practices	in	the	design	of	books	on	software	processes	and	practices	
that	can	help	guide	us	as	we	write	a	book	that	hopefully	is	a	good	read	to	a	decent	audience	and	that	stands	up	
over	time.	

We	 need	 to	 clarify	 one	 point—when	 we	 describe	 books	 as	 belonging	 to	 the	 software	 processes	 and	
practices	domain	we	mean	this	in	a	broad	way	to	differentiate	between	books	about	mindset,	workflows	and	

Who	Will	Read	My	Patterns?:	Page	-	4	

	

practices,	and	team	collaboration	from	software	books	about	specific	technologies,	programming	languages,	or	
detailed	coding	practices.	Looking	at	our	selection	of	books,	this	should	be	evident,	but	we	still	wanted	to	state	
this	to	avoid	any	misunderstanding.	

3.1 Book	Styles	
The	 first	 thing	we	 realized	 is	 that	 there	 are	 different	 styles	 of	 books.	What	 style	 to	 choose	 is	 driven	 by	 the	
purpose	of	the	book,	as	well	as	by	the	communication	style	of	its	writers.	We	believe	that	being	both	conscious	
about	what	style	to	select	and	aware	of	the	benefits	and	challenges	is	necessary	when	finding	a	book	style	that	
fits	with	the	authors’	goals	and	abilities.	In	table	1	we	show	examples	of	books	for	each	style.	
STORY-TELLING	

In	 these	 books,	 the	 goals	 of	 a	 methodology	 gradually	 become	 clear	 through	 stories,	 either	 as	 examples	 or	
introductions	 or	 authors	 personal	 experiences,	 or	 in	 the	 ultimate	 way	 as	 full-blown	 novels.	 This	 style	may	
make	the	advice	of	what	to	do	more	obscure—the	reader	needs	to	extract	these	essences	out	of	the	story	and	
find	 out	 how	 these	 ideas	 might	 work	 in	 their	 own	 context.	 But	 this	 style	 allows	 for	 a	 more	 intuitive	 and	
personal	understanding	of	the	whys,	and	it	leaves	more	to	the	imagination	of	the	reader,	which	is	more	fun	and	
challenging	than	books	that	are	very	prescriptive.	To	be	successful	with	this	style,	especially	if	creating	a	book	
that	 is	a	 full-blown	novel,	 the	authors	must	be	able	 to	write	prose	well,	 and	not	only	be	able	 to	write	about	
technical	practices.	
MINDSET/PHILOSOPHICAL	

These	 writings	 (whether	 the	 whole	 book	 or	 the	 introductory	 part	 of	 a	 book)	 are	 focusing	 on	 the	 way	 of	
thinking	rather	 than	specific	activities.	The	challenge	here	 is	 to	get	 the	reader	 to	understand	a	value	system	
and	 goals,	 and	 doing	 so	 in	 a	 way	 where	 the	 reader	 can	 see	 how	 this	 thinking	 can	 apply	 in	 their	 own	
organization	and	 to	 their	 specific	 context.	You	 really	 cannot	 tell	 people	how	 to	 think.	Reading	 the	 text	must	
gradually	build	up	the	reader’s	own	perceptions,	as	well	as	internalizing	the	authors’	values.	Some	readers	may	
be	able	to	attend	workshops	or	talks	by	the	authors,	and	even	engage	in	a	dialogue	where	misconceptions	can	
be	weeded	out.	But	most	readers	will	only	have	the	book	as	their	guide.	
PRACTICAL	GUIDES	

Most	of	the	software	process	books	fall	within	this	category,	describing	a	number	of	activities	in	enough	detail	
that	the	readers	can	practice	them.	In	many	cases,	these	books	become	tools	that	the	reader	repeatedly	refers	
to	when	performing	the	practices.	Some	guides	have	a	mindset	introduction	part,	but	most	of	the	book	turns	
into	a	tool	for	the	reader	with	guidance	on	what	to	do,	and	when.	They	can	be	somewhat	weaker	on	the	why’s	
behind	the	practices.	Sometimes	the	practical	guide	is	a	companion	to	other	works	that	deal	with	the	mindset.	
REFERENCES	

Some	books	really	are	collections	of	a	specific	type	of	content,	as	for	example	some	of	the	patterns	books.	They	
differ	from	the	practical	guides	in	that	there	is	no	story	involved	in	the	sequencing	of	their	contents,	nor	goal	of	
building	up	a	methodology	through	following	the	practices.	
EMPIRICAL	

Contents	of	 empirically	grounded	books	are	built	on	a	 certain	amount	of	 research	based	on	 studying	 teams,	
organizations,	or	systems	to	extract	out	essential	information.	Rather	than	being	the	loosely	founded	ideas	or	
opinions	of	 the	authors,	 they	are	based	on	empirical	studies.	Books	can	have	elements	of	empirical	contents,	
for	instance	including	one	or	several	case	studies.	
 	

Who	Will	Read	My	Patterns?:	Page	-	5	

	

	
	

Table	1	Book	Styles	

BOOK	TYPE	 BOOK	EXAMPLES	

Story-telling	(or	elements	of)	 The	Deadline		
The	Phoenix	project		
Fearless	Change	

Mindset/philosophical	 The	Mythical	Man	Month	
Extreme	Programming	Explained	
Agile	Testing		
Business	Patterns	for	Software	Developers	

Practical	Guides	 Retrospectives		
Writing	Effective	Use	Cases		
How	to	Break	Software		
Fearless	Change	

References	 Design	Patterns	
POSA	
Org	Patterns	
Software	Systems	Architecture	

Empirical	 Accelerate	
Org	Patterns	

	

3.2 Book	Design	Topics	
The	next	insight	we	gained	was	that	there	are	a	number	of	topics	where	the	authors	need	to	make	conscious	
decisions	when	creating	the	design	of	a	book.	The	style	of	book	will	impact	these	decisions.	Let	us	explain	the	
design	topics:	
OVERALL	STRUCTURE	

When	writing	a	theater	play,	there	is	a	certain	recipe	to	follow:	introducing	the	characters,	setting	the	context,	
building	 up	 the	 suspension	 in	 the	 first	 act,	 and	 resolving	 it	 in	 the	 last,	 creating	 the	 finale.	 The	 design	 of	
technical	 books	may	be	 less	 evident	 and	 there	 is	 a	 lot	 of	 variation.	However,	 good	 technical	 books	 typically	
have	 a	 structure	 that	 helps	 the	 reader	 navigate	 their	 contents.	 They	 often	 provide	 both	 an	 overview	 of	 the	
communicated	knowledge	as	well	as	the	details.		

A	common	practice	that	works	well	is	to	start	with	an	overview,	which	introduces	the	concepts	and	major	
ideas.	 If	 this	 is	 written	 as	 a	 standalone	 section,	 readers	 who	 are	 not	 ready	 to	 dig	 into	 the	 details	 can	 still	
appreciate	 the	 book,	 and	 possibly	 recommend	 it	 to	 others	 and/or	 put	 it	 aside	 for	 further	 study	 later.	 This	
method	is	often	used	in	Practical	Guides,	to	first	create	an	understanding	of	the	overall	domain	or	methodology	
before	being	followed	with	the	more	direct	advice	or	detailed	techniques.	The	same	structure	can	be	applied	
within	each	chapter:	starting	with	an	overview	explaining	the	more	detailed	concepts	followed	by	the	details	of	
their	application.	

Both	a	book’s	 contents	 as	organized	 into	 chapters,	 and	 the	order	of	 those	 chapters	have	a	big	 impact	on	
readability.	 Although	 not	 a	 novel,	 there	 is	 still	 a	 story	 to	 be	 told	 or	 a	methodology	 to	 be	 unfolded,	 and	 the	
reader	needs	to	be	exposed	to	the	concepts	and	ideas	in	a	logical	sequence.	Typically,	this	proceeds	in	one	of	
two	ways:	 from	 the	basics	 to	more	 advanced	 topics,	 or,	 from	 the	 start	 to	 the	 end	of	 a	 development	process	
timeline.1	 Books	 written	 by	 multiple	 authors,	 and	 not	 least	 where	 authors	 write	 individual	 chapters	 are	
especially	 challenging,	 with	 a	 higher	 risk	 of	 repetition	 and	 even	 potential	 conflicts	 or	 inconsistences	 in	
terminology	and	practices.	
 	

1 Although this ordering from basic or fundamental topics to more advanced concepts may cause the reader to skip important concepts that are
stuck in the back of a long book. Eric Evans has remarked that the most important part of his Domain-Driven Design book was the second half and
unfortunately, because of this book’s length, not many readers got that far.

Who	Will	Read	My	Patterns?:	Page	-	6	

	

	
NAVIGATION	

Navigation	is	related	to	structure	in	that	a	book	with	a	good	flow	of	content	is	also	easier	to	navigate.	But	help	
with	navigation	can	also	be	accomplished	by	explicitly	explaining	the	structure	of	the	book	in	the	introduction2,	
or	 by	pointing	 the	 reader	 to	particular	 sections	 targeting	 special	 roles	 or	 interests.	 The	 essential	 navigation	
tool	is	the	table	of	contents	(TOC).	For	the	TOC	to	work	well,	 it	 is	 important	to	give	descriptive	names	to	the	
chapters	so	that	it	is	clear	what	they	are	about.	Cool	or	catchy	titles	may	increase	the	entertainment	value,	but	
at	the	cost	of	navigational	support.	
LENGTH	

After	years	of	reading,	and	being	avid	readers	at	that,	we	observe	that	the	length	of	the	book	is	a	key	element	of	
its	design.	Too	short,	and	a	book	is	more	like	a	booklet	and	may	not	gain	the	full	respect	as	a	book	would.	But	
we	 both	 have	 read	 too	 many	 books	 that	 are	 far	 longer	 than	 they	 needed	 to	 be.	 Some	 carefully	 designed	
repetition	to	help	readers	remember	the	essence	(like	a	summary	at	the	end	of	each	chapter)	is	good.	But	for	
many	books,	readability	would	improve	if	the	authors	removed	some	repetition,	and	in	some	cases,	removed	
sections	that	are	not	relevant	to	the	main	ideas	of	the	book.3	
USE	OF	ILLUSTRATIONS	

Illustrations	add	to	the	understanding	and	they	break	up	the	monotony	of	the	text.	They	need	to	be	relevant,	
and	they	need	to	be	accompanied	by	explanatory	text.	They	also	need	to	be	intuitive	enough	not	to	require	in-
depth	study	to	make	sense.	Finally,	they	need	to	work	in	color	as	well	as	in	monochrome.	

Illustrations	in	a	book	are	part	of	creating	a	book’s	identity.	It	works	really	well	when	illustrations	follow	
the	same	style	throughout.	
“HOW	TO”	EXAMPLES	

When	 writing	 about	 software	 methodology	 rather	 than	 software	 programming	 or	 design,	 examples	 are	
probably	best	done	as	small	stories	(e.g.	the	examples	are	not	code	snippets).	The	story	must	be	long	enough	to	
provide	the	reader	enough	information	to	understand	how	to	use	a	practice	without	taking	up	too	much	space	
or	 including	too	many	superfluous	details.	 It	also	can’t	appear	contrived	or	artificial.	The	story	must	connect	
with	the	core	readers	using	a	simple	enough	context	so	that	it	does	not	require	implicit	knowledge	to	follow.	

One	practice	is	to	use	a	running	example	throughout	the	book.	This	makes	it	easier	for	the	reader	to	follow	
(e.g.	not	changing	the	context	for	each	example).	But	speaking	from	experience,	this	is	much	more	difficult	for	
the	 writer	 who	 has	 to	 creatively	 think	 how	 to	 weave	 the	 topics	 she	 wants	 to	 cover	 into	 a	 coherent	 story.	
Technical	 books	 that	 are	written	 as	 novels	 have	 accomplished	 this,	 as	 the	 ideas	 are	 explained	 through	 one	
extensive	example.	However,	the	downside	of	this	one	example	approach	is	that	not	all	the	advice	may	be	so	
easily	woven	into	a	single	storyline,	especially	if	there	are	competing	or	alternate	sequences	of	practices	that	
could	be	followed.	
CHOICE	OF	AUTHOR’S	VOICE	

Authors	who	share	personal	stories	tend	to	increase	credibility	–	it	builds	trust	as	the	reader	learn	about	the	
author	and	her	personal	experiences.	However,	 some	readers	may	not	 like	a	book	 that	 is	 too	personal	 (they	
want	 distance	 from	 the	 author	 and	desire	 that	 the	 content	 speaks	 for	 itself).	 So	 choosing	what	 voice	 to	 use	
must	be	done	with	care.	And	if	there	are	several	authors,	how	best	can	you	blend	their	voices?	A	related	issue	is	
if	whether	the	author	should	address	the	reader	directly,	or	keep	the	form	more	generic.	Either	way,	the	book	
needs	to	apply	the	same	approach	consistently	throughout.	
STYLE	OF	NOTES	AND	REFERENCES	

Some	academic	works	include	references	to	such	an	extent	that	it	affects	readability.	When	writing	a	book	for	
practitioners	it	may	be	better	to	keep	references	more	low-key	and	not	have	too	many	footnotes.4		

2 Assuming that the readers read the introduction, of course.
3 During the writing process of my second book [WM], I, Rebecca, felt I really had to include sections on documenting designs and handling
exceptions. While these were great topics, they were not core to responsibility-driven design. Good chapters, but not essential ones.
4 In the first book I co-authored [WWW], I, Rebecca, intentionally did not include any references. While object technology was relatively new at
this point, we did have other sources for our inspiration. In hindsight, we should have pointed our readers to them, perhaps in an appendix. In my
second book, for each chapter we decided (if there were any for the topic in that chapter), to include an optional section, Further Reading, which
followed the Chapter Summary.

Who	Will	Read	My	Patterns?:	Page	-	7	

	

PATTERNS	

Since	our	planned	book	has	patterns,	we	need	to	think	specifically	about	the	above	topics	 in	the	context	of	a	
patterns	book.	Unless	we	create	a	patterns	book	that	is	more	of	a	reference	type	book,	it	is	a	challenge	to	get	
the	appropriate	balance	between	the	flow	and	the	collection	of	patterns,	and	to	deal	with	the	broader	context	
and	specific	details	without	being	repetitive	within	the	individual	patterns.	

Another	issue	is	how	to	include	examples	in	a	natural	way.	The	practice	of	“3	known	uses”	in	every	pattern	
is	 not	 the	 most	 user-friendly	 solution.	 A	 running	 example	 and	 a	 good	 discussion	 of	 the	 application	 of	 the	
patterns	may	be	better.	

A	patterns	book,	in	contrast	to	a	conference	paper,	has	the	benefit	of	dealing	with	a	collection	of	patterns	as	
a	larger	body	of	work.	That	enables	the	authors	to	set	the	stage	by	explaining	the	shared	context	outside	the	
individual	patterns.	 It	 also	 allows	 the	 authors	 to	 introduce	 typical	 pattern	 sequences	 and	 to	 tell	 stories	 that	
weave	the	collection	together	into	the	whole	that	“patterns	people	“	long	for.		

	
There	is	no	one	solution	for	addressing	all	these	topics	in	a	book	design.	The	appropriate	way	to	deal	with	a	
particular	topic	depends	on	the	context	of	the	book,	the	needs	of	its	intended	readers,	as	well	as	the	preference	
of	the	authors.	Many	books	are	likely	written	without	an	explicit	decision	about	each	design	topic.	Be	we	firmly	
believe	that	to	make	an	effort	into	understanding	and	deciding	on	how	to	deal	with	these	topics	will	benefit	our	
final	work.	

4. WHAT	WE	LEARNED	FROM	THE	READERS	

We	started	off	considering	what	we	like	about	technical	books,	being	consumers	as	well	as	authors	(Rebecca	is	
an	experienced	book	author,	Lise	is	an	aspiring	book	author).	By	interviewing	each	other	about	books	we	have	
read,	and	discussing	what	we	appreciated	with	the	these	books	and	what	we	would	have	changed,	we	came	up	
with	a	set	of	questions	to	send	to	people	we	know	in	the	software	community.	The	questions	and	a	summary	of	
the	feedback	are	shown	in	table	2.	

The	 primary	 readers	 of	 our	 patterns	 are	 roles	 that	 work	 extensively	 on	 managing	 requirements	 using	
digital	 tooling	 (e.g.	ALM	systems).	Because	we	 felt	 that	our	 thinking	around	writing	 technical	books	was	not	
particularly	 specific	 to	 this	 topic,	 we	 also	 decided	 to	 reach	 out	 to	 people	 that	 we	 know	 are	 reading	 books	
regularly	and	have	a	broader	reference	frame.	Targeting	only	people	in	a	Product	Owner	or	Business	Analyst	
role	would	 limit	the	people	we	could	ask	for	 feedback	and	the	books	that	we	would	analyze	for	design	ideas	
without	good	reason.	We	ended	up	with	19	responses	from	a	variety	of	roles	and	affiliations.		

Going	 through	 the	 various	 answers	 we	 created	 a	 table	 extracting	 the	 essence	 of	 the	 responses.	 This	 is	
shown	in	table	2	below.	Quotes	from	the	feedback	are	used	in	Appendix	B	to	support	a	number	of	book	design	
principles.	The	feedback	also	helped	in	creating	the	personas	and	story	in	the	following	chapters.	
	

Table	2	Summarizing	the	Responses	

QUESTION	 EXTRACTED	COMMON	THREADS	

What	makes	you	choose	
a	software	process	
book?	

Recommendation	from	colleague	or	friend	(someone	trusted)	
Meeting	or	hearing	the	author	talk	at	a	conference	or	online	webinar	(either	speaker	is	an	author	or	the	
speaker	recommends	a	book)	
Knowing	the	author	
Popularity	
Required	for	work	

Is	there	a	book	that	you	
would	recommend	to	
your	colleagues	and	if	so	
why?	

Recommended	books	are	typically	classics	or	very	new,	they	are	mostly	very	known,	and	connected	to	the	
role	of	the	person	recommending	(QA,	architect,	etc.)	
Books	can	serve	as	a	way	to	build	common	understanding	and	vocabulary	and	so	are	recommended	to	
colleagues	as	a	way	to	share	ideas,	and	given	to	clients	as	a	way	to	promote	concepts.	

Do	you	have	a	personal	
favorite	of	this	type	of	
book,	and	if	so	what	do	
you	like	about	it?	

Books	that	are:		
-	Conceptual	
-	Helpful	(constructive)	
-	Straightforward	
-	Books	as	novels	

Do	you	have	a	software	
process	book	that	you	

Most	have	personal	favorites	that	they	return	to,	for	example	Fowler’s	Analysis	Patterns,	or	The	Mythical	

Who	Will	Read	My	Patterns?:	Page	-	8	

	

read	more	than	2	years	
ago	that	still	has	an	
impact	on	your	work?	

Man-month,	or	Extreme	Programming.	

If	you	think	of	a	book	
that	you	did	not	
particularly	like	or	find	
useful,	can	you	explain	
why?	

Books	that	bring	nothing	new	and	have	too	much	fluff	
Books	written	for	the	wrong	reasons	(marketing	of	company,	or	joining	the	hype	bandwagon	without	
proper	experience	in	the	topic)	
Hard	reads	(technical,	good	content	but	hard	to	access)	
Too	much	detail,	not	enough	abstraction	

If	you	have	written	
books	yourself,	do	you	
have	any	advice	to	
share?	

Use	stories.	
Write	less.	Publish	more.	
Create	several	small	books	rather	than	one	big	one.	
Use	LeanPub	to	allow	the	book	to	grow.	
Write	most	of	the	book	before	you	go	to	a	publisher.	

How	much	of	your	
technical	knowledge	
gathering	is	from	
reading	books	versus	
information	from	other	
sources?	

Varies	from	5%	to	70%,	so	very	individual,	but	many	readers	consume	a	larger	amount	of	books	and	use	
this	medium	for	the	deeper	insights.	
Other	sources	are	conferences	and	online	resources.	

What	medium	do	you	
prefer	for	gathering	
knowledge	about	
software	
process/practices/tools	
(books,	articles,	blogs,	
other	online	sources)?	

Many	different	ways	to	gain	insights,	but	books	are	still	important	to	most.	Conferences	or	online	resources	
may	bring	initial	ideas,	but	the	fundamentals	in	a	well-written	book	last	longer.	
Online	resources	are	a	strong	contender	for	some	(or	straight	out	preferred).	
Audio	books	are	a	good	alternative	to	some	as	you	can	listen	while	doing	other	things.	
About	e-books,	readers	seem	to	either	prefer	or	really	dislike	them.	

	
As	we	reached	out	to	colleagues	and	friends	for	feedback,	we	got	many	answers	that	resonated	with	our	own	
opinions.	These	were	good	contributions	that	helped	us	organize	our	thinking	and	confirm	our	initial	ideas.	But	
we	 are	 individuals	 with	 different	 experiences	 and	 personalities,	 and	 from	 different	 organizational	 cultures.	
Some	of	 the	responses	we	received	were	eye	openers	 that	brought	new	 insights	and	ways	of	 thinking	about	
aspects	of	books	and	mediums	of	learning	in	general.	Below	are	some	new	insights	that	we	extracted	from	the	
feedback:	
	
People	 recommend	 books	 that	 are	 meaningful	 to	 them,	 books	 that	 they	 really	 care	 about,	 so	 the	
recommendation	 is	a	gift	and	a	way	of	community	building,	of	sharing	 ideas	through	a	respected	medium	(a	
popular	book,	an	acclaimed	author).	

“The	ability	to	improve	stuff	and	help	people	enjoy	life	at	work	-	that's	probably	my	#1	attribute	of	
great	books”	

“I	may	hear	a	talk	by	the	speaker,	or	a	book	is	recommended	to	me	by	somebody	whose	opinion	I	
respect.”	

The	 enjoyment	 of	 reading	 stories	 rather	 than	 dry	 facts	 was	 a	 common	 thread	 in	 the	 feedback.	 In	 general,	
people	were	most	positive	about	books	 that	 engage	and	excite,	 that	 communicate	with	 them	and	where	 the	
ideas	 resonate	with	what	 they	are	already	 thinking	and	doing	but	 then	providing	additional	 insights	and/or	
helpful	practices.	The	book	needs	to	fit	onto	the	value	system	of	the	reader.	

“I	love	this	book	because	it	made	me	think”	

It	was	 clear	 that	 it	 is	 common	 to	 have	 a	 small	 set	 of	 books	 (a	 “tool	 box”)	 that	 one	 returns	 to	 for	 ideas	 and	
practices,	maybe	learning	something	new	or	deeper,	or	freshening	up	on	how	to	do	something.		

“I	 continue	 to	 go	 back	 to	 "Writing	 Effective	 Use	 Cases"	 and	 "User	 Stories	 Applied"	 for	 defining	
functionality”	

	

Who	Will	Read	My	Patterns?:	Page	-	9	

	

5. CREATING	PERSONAS	

Instead	of	doing	user-centered	design	of	a	software	product,	we	are	doing	reader-centered	design	of	a	book	for	
software	professionals.	When	designing	 for	users	(readers),	a	persona	 is	a	way	of	representing	user	roles	or	
user	goals	in	a	way	that	both	make	the	user	more	personal	to	deal	with,	and	that	can	represent	more	than	just	
the	role	itself.	A	persona	can	be	a	user	of	a	certain	type	with	a	defined	experience	level	and	preference,	and	this	
helps	the	designer	think	about	all	aspects	of	users.		
USER	ROLES	

Our	product	is	a	book	about	how	to	use	Application	Lifecycle	Management	(ALM)	tooling	to	manage	product	
backlogs	for	systems	and	development	organizations	that	are	beyond	what	can	be	managed	by	simpler	means	
like	post-its	on	a	wall.	Our	readers	can	be	anyone	in	the	product	development	organization,	but	we	specifically	
target	 the	 roles	 that	 deal	 the	 most	 with	 requirements:	 Product	 Owner,	 Business	 Analyst,	 Senior	 software	
developer/architect.	
EXPERIENCE	

To	cover	more	variations	of	use,	we	want	our	users	 to	have	different	 levels	of	 experience:	Not	 familiar	with	
digital	product	backlog	tools,	used	product	backlog	tools	before	but	did	not	create	the	structures,	expert	user	of	
product	backlog	tools	(admin	level	privileges).	
PERSONALITY	

We	 used	 the	 reader	 feedback	 to	 define	 reader	 personality	 types.	 The	 reader’s	 personality	 is	 important	 to	
include,	 because	 two	 individuals	 with	 the	 same	 role	 and	 experience	 level	 may	 still	 approach	 the	 learning	
process	 very	 differently.	 We	 selected	 to	 cover:	 the	 impatient	 reader	 who	 only	 reads	 to	 get	 the	 general	
understanding	and	skims	through	most	of	a	book,	 the	 immersed	reader	who	will	 study	the	whole	book,	and	the	
reader	who	prefers	online	media	but	will	read	books	when	necessary.		
 	

Who	Will	Read	My	Patterns?:	Page	-	10	

	

	
We	 found	 all	 these	 reader	 personality	 types	 among	 the	 people	 who	 responded	 to	 the	 survey.	 Bringing	

together	the	three	dimensions	of	user	characteristics	we	created	four	personas	as	shown	in	figure	2.	
	
	

	
	

Figure	2	Persona	Cards	

6. CREATING	A	STORY	

On	a	beautiful	summer	evening,	Allison	is	meeting	with	friends	and	colleagues	at	a	restaurant	in	Boston.	They	
are	all	attending	a	conference,	and	have	met	up	to	share	some	food	and	drinks	after	a	long	day.	As	the	evening	
turns	 towards	 night,	 Allison	 gets	 into	 an	 interesting	 conversation	 with	 Anna	 who	 also	 works	 as	 a	 product	
owner	 for	 a	 large	 software	 company.	 When	 Allison	 explains	 about	 his	 frustrations	 with	 managing	
requirements	–	he	is	the	product	owner	for	a	software	program	with	a	complex	stakeholder	organization	and	
with	 development	 teams	 distributed	 in	 several	 countries	 and	 time	 zones	 –	Anna	 tells	 him	 that	 she	 recently	
read	 a	 book	 that	 had	 some	 good	 advice	 on	 using	 digital	 tooling	 to	 deal	 with	 large	 and	 complex	 sets	 of	
requirements.	She	said	the	book	had	very	practical	advice	and	had	helped	her	team	find	a	way	forward	where	
they	had	built	a	product	backlog	that	really	supported	their	development	process	as	well	as	 their	process	of	
developing	 the	 requirements	 and	 bringing	 visibility	 to	 all	 parties	 involved.	 The	 name	 of	 the	 book	was	 The	
Magic	Backlog.	“Why	magic?”	asked	Allison.	“Read	it	and	see	for	yourself,”	Anna	replied	and	laughed.	

A	couple	of	days	later,	Allison	was	at	the	gate	waiting	for	his	plane	back	to	Phoenix	when	he	thought	about	
what	Anna	had	told	him.	He	went	online	and	quickly	purchased	an	electronic	copy	of	The	Magic	Backlog.	Well	
seated	 in	 the	 airplane,	 he	 opened	 his	 downloaded	 copy	 and	 started	 to	 read.	 Allison’s	 style	 of	 reading	 is	
somewhat	 impatient	 and	 some	would	 say	 erratic.	 He	 looked	 at	 the	 recommendations	 and	 recognized	 some	
names	of	people	recommending	the	book.	So	far,	so	good.	Then	he	flipped	over	the	foreword	and	introduction	
and	 started	 reading	 on	 chapter	 2	 that	 gave	 an	 overview	 of	 the	 contents	 and	 was	 focusing	 on	 the	 overall	
approach.	He	then	looked	at	a	few	chapters,	studied	the	illustrations,	and	read	a	couple	of	patterns	(well,	he	did	

Who	Will	Read	My	Patterns?:	Page	-	11	

	

not	really	read	them	but	kind	of	skimmed	through).	He	then	looked	at	the	table	of	contents.	By	that	time,	the	
drinks	were	being	served,	and	he	turned	off	his	tablet,	enjoyed	a	glass	of	wine	and	fell	asleep.	

The	next	day	in	the	office,	he	popped	his	head	into	the	office	of	Caroline.	“Hi	there,	how	are	things	going?”	
he	asked,	not	really	expecting	more	than	a	busy	“fine,	fine…”.	But	today	he	caught	Caroline	in	a	bad	moment.	
She	was	 trying	 to	produce	a	 status	update	on	 the	 latest	 features	and	was	wading	 through	e-mails	and	Slack	
channels	 and	 individual	 team	backlogs	 to	 try	 to	piece	 together	 the	 report.	After	 a	 few	minutes	of	 frustrated	
explanations	of	what	she	is	trying	to	do,	she	finally	asked	Allison	“So	how	was	the	conference,	anything	useful	
for	us?”	“You	know	what,”	answered	Allison,	“someone	recommended	me	a	book	and	I	took	a	look	at	it	on	the	
plane	on	my	way	home.	I	think	it	might	be	interesting	to	you?	I	will	send	you	the	link	to	it.”	

It	took	Caroline	a	couple	of	days	to	even	have	time	to	open	the	link,	but	when	she	did	she	decided	to	buy	a	
hard	copy	of	the	book.	Being	a	real	bookworm,	Caroline	preferred	to	read	books	the	“old	way,”	so	she	waited	a	
couple	more	days	for	the	paper	copy	to	arrive.	That	weekend	was	rainy	and	cold,	so	she	made	some	tea	and	
curled	up	on	the	couch	to	read	the	book.	As	she	started	reading,	she	quickly	realized	that	there	was	advice	in	
this	book	that	addressed	her	problems	managing	and	reporting	on	requirements	for	the	software	program	that	
she	was	assigned	to.	It	was	large	and	complex,	just	like	examples	in	the	book.	She	really	liked	the	way	the	book	
was	organized	 in	 giving	her	 ideas	 about	how	 to	 get	 started	and	what	practices	 to	do	early,	 and	which	were	
more	advanced.		

On	Monday	morning,	she	went	straight	to	the	office	of	Taylor,	her	good	friend	and	the	project	manager	for	
one	of	the	projects	of	the	software	program.	“Taylor”	she	said	and	handed	her	The	Magic	Backlog,	“if	you	want	
us	to	remain	friends,	please	read	this	book	and	then	work	with	me	to	make	my	life	less	miserable.	I	am	dying	
trying	to	handle	all	the	requirements	and	their	statuses	through	development	for	the	overall	program.	I	think	
we	could	use	some	advice	from	this	book	and	make	some	big	improvements.”	Taylor,	being	a	good	friend,	takes	
the	 book	 and	 promises	 to	 read	 it.	 And	when	 she	 does,	 she	 realizes	 that	 Caroline	 is	 right.	 The	 book	 is	 very	
practical,	 and	 although	 it	 has	 a	 lot	 of	 practices,	 it	 is	 very	 clear	 on	 how	 to	 start.	 The	 running	 examples	with	
illustrations	are	really	helping	to	understand	the	implementations.	She	also	appreciates	the	way	the	patterns	
deal	with	tradeoffs	and	possible	negative	consequences	–	it	gives	the	feeling	that	this	is	real	stuff	and	not	fluff.	
So	she	decides	to	try	with	the	fundamental	practices,	and	she	and	Caroline	get	together	to	plan	for	workshops	
with	her	team	to	start	structuring	their	backlog	following	the	advice	from	the	book.	

As	Caroline	and	Taylor	are	working	through	improvements,	Allison	is	also	getting	involved.	They	eventually	
persuade	 the	program	manager	 to	adopt	 the	basic	backlog	practices	 for	 the	overall	program.	This	 leads	 to	a	
better	planning	of	features	across	the	program,	with	better	visibility	of	progress.	As	things	are	falling	in	place,	
Caroline	uses	the	examples	from	the	book	to	tune	their	implementation	as	she	gains	new	insights.	Over	time,	
Caroline	returns	to	the	book	to	look	at	the	more	advanced	practices.	She	gets	to	a	point	where	she	no	longer	
implements	the	patterns	strictly	following	the	book.	She	has	a	good	grasp	of	the	concepts	and	can	see	how	the	
implementations	 can	be	done	 in	 the	best	way	within	her	organization.	 In	 the	beginning	 she	appreciated	 the	
practicality	and	examples;	now	more	and	more	she	appreciates	the	discussions	and	the	ways	of	thinking	that	
are	encouraged	by	the	book.	

Word	 of	 the	 improvements	 for	 this	 program	 reaches	 the	 company’s	 Software	 Director,	 and	 she	 visits	
Caroline	to	discuss.	This	results	in	the	internal	training	program	being	updated	with	a	training	using	patterns	
from	The	Magic	Backlog.		

Caroline	 and	 Taylor	 are	 also	 asked	 to	 help	 a	 struggling	 project	 in	 the	 organization	 to	 establish	 a	 better	
backlog	and	better	workflows	for	the	team.	This	project	has	a	Business	analyst	named	Nicolas,	who	has	only	
worked	as	a	business	analyst	 for	a	year.	Caroline	decides	 to	use	an	 informal	approach	so	not	 to	 seem	 like	a	
“know-it-all”	 expert	 and	alienate	 the	 troubled	 team.	 She	walks	over	 to	 the	 team	area	 and	pops	 into	Nicolas’	
small	office.	“Hi	there,”	she	says.	“I	am	Caroline,	the	BA	for	the	GFP	program	over	in	building	C.	I	was	asked	to	
share	some	of	our	experiences	with	you.	Do	you	have	time	to	talk?”	At	first,	Nicolas	is	a	bit	protective,	but	after	
a	while	he	gets	comfortable	due	to	Caroline’s	down	to	earth	style.	Her	practical	questions	make	him	realize	that	
she	has	a	lot	of	experience.		

As	Nicolas	is	opening	up,	Caroline	goes	into	listening	mode.	Nicolas	tells	her	that	he	is	not	so	familiar	with	
the	use	of	ALM	tooling,	and	being	new	to	the	project	he	is	struggling	to	understand	how	the	team	is	working.	
He	is	supposed	to	provide	dashboards	and	weekly	reports	on	the	status	of	the	requirements,	but	finds	it	hard	
to	extract	anything	meaningful	out	of	the	backlog	items.	The	team	is	often	upset	with	the	reports	being	wrong,	
but	they	are	not	good	at	keeping	the	backlog	items	up	to	date.	Caroline	soon	realizes	that	she	cannot	just	work	
with	Nicolas,	but	needs	help	from	Taylor	and	Alison	to	work	with	the	whole	team,	and	that	this	will	take	time.	

Who	Will	Read	My	Patterns?:	Page	-	12	

	

But	 to	 start,	 she	 will	 focus	 on	 mentoring	 Nicolas.	 She	 invites	 him	 over	 to	 her	 area	 to	 show	 him	 how	 her	
program	 is	managing	 the	backlog,	 as	an	example.	 “Just	know	 that	we	 found	a	way	of	working	 that	 suits	our	
team,”	she	says.	“It	took	a	lot	of	learning	and	failing	before	we	got	there.	But	maybe	it	can	help	you	avoid	some	
of	the	mistakes	we	did.	I	also	would	recommend	you	to	read	a	book	that	helped	me	a	lot,	and	still	does.”	

Caroline	can	see	from	Nicolas’	reaction	that	he	very	interested	in	seeing	how	her	team	works,	but	he	is	not	
so	 keen	on	having	 to	 read	 a	 book.	 “Do	 you	 really	 think	 that	 a	 book	will	 help?”	 he	 asks.	 “You	know,”	 replies	
Caroline,	“there	are	other	resources	you	can	access	first,	and	then	you	can	read	the	book	if	you	want	later.	The	
authors	have	a	very	good	web	page	that	give	you	access	to	webinars,	talks,	and	articles	that	is	a	different	way	of	
gaining	this	understanding.	Maybe	start	 listening	to	the	talk	they	did	at	the	Agile	conference	 last	year.	 It	will	
give	you	a	good	introduction.	It	was	very	practical	and	focused	on	the	basics	of	backlogs	using	digital	tooling.	
They	also	have	a	very	good	webinar	on	dashboards,	but	you	know	if	you	do	not	have	your	contents	in	a	good	
shape	then	you	cannot	trust	your	dashboards	to	show	the	right	information.”		

Nicolas	thanks	her	for	her	help,	and	they	agree	on	a	time	for	him	to	come	over	to	Caroline’s	area	to	see	how	
she	is	working.	Two	days	later	a	cheerful	Nicolas	shows	up	in	Caroline’s	office.	“Thanks,”	he	says,	“thanks	for	
showing	me	that	web	page!	I	have	listened	to	several	of	the	webinars,	and	this	stuff	is	easy	to	share	with	my	
teammates	 too.	Taylor	 came	over	 to	 talk	with	my	project	manager,	 and	we	have	agreed	 to	 sit	with	you	and	
Taylor	 to	 define	 a	 roadmap	 for	 how	 to	 get	 our	 project	 moving	 forward	 with	 a	 better	 backlog.	 My	 project	
manager	bought	 the	Magic	Backlog	book,	and	I	have	been	reading	a	bit	 in	 it.	But	 I	 love	the	online	resources.	
Now	show	me	how	you	super-smart	people	are	doing	this!”	

vvvvvvvv

In	this	story	we	illustrated	the	following	goals	of	a	book	design:	
-	 Fast	grasp	of	what	the	book	is	about	
-	 Providing	practical	advice	
-	 Includes	deeper	meanings	
-	 Ability	to	become	a	reference,	a	tool	(not	a	onetime	read)	
-	 Support	for	several	roles	on	several	levels	
	

We	should	point	out	that	our	personas	were	first	created	before	we	ran	the	reader	survey.	They	represent	the	
readers	we	envision	for	our	work.	Their	profiles	are	not	drawn	from	the	survey	responders	but	as	we	got	their	
feedback	and	learned	what	people	want	in	a	reading	experience,	we	started	weaving	these	preferences	into	our	
persona	behavior	and	into	their	stories.	

Our	feedback	showed	us	that	not	everyone	used	books	as	their	primary	media,	so	we	included	this	in	the	
story.	There	 is	a	discussion	of	books	versus	other	media	and	how	they	can	come	 together	as	a	whole	 in	 the	
discussion	chapter	later	in	the	paper.	Our	story	was	not	about	the	particular	advice/patterns	that	would	be	in	
the	book,	as	this	would	require	the	reader	of	this	paper	to	be	familiar	with	our	patterns	collection.	

7. DESIGNING	A	BOOK	FOR	OUR	PERSONAS	

Based	on	our	feedback,	readers	read	technical	books	because	they	need	knowledge	to	solve	a	problem,	or	they	
want	to	learn	more	about	a	topic,	or	in	some	cases	need	to	learn	more	about	the	author.	So	if	the	reader	has	a	
purpose,	then	we	as	authors	need	to	understand	that	and	help	the	reader	quickly	understand	what	we	cover	in	
the	book	with	the	goal	of	matching	the	purpose	of	the	reader	with	the	contents	and	intention	of	our	work.	We	
want	 to	 be	 clear	 about	 our	 target	 audience	 and	why	we	 think	 they	 can	 benefit	 from	 reading	 the	 book.	 The	
reader	 invests	 time	 in	 reading	 and	we	want	 to	 provide	 return	 on	 that	 investment.	 Even	more,	we	want	 the	
readers	 to	be	excited	about	 the	 insights	 they	gain	 from	reading	 it,	 so	 that	 they	will	 recommend	 the	book	 to	
their	 friends	and	colleagues.	This	way	we	can	reach	a	broader	audience	and	get	return	on	our	investment	as	
authors	by	knowing	that	we	have	shared	our	experience	and	our	practices	with	our	community	and	hopefully	
helped	people	having	the	same	need	for	guidance	that	we	had	when	we	started	out	using	ALM	tools	for	product	
backlogs.	

⇨	 Defined	 target	 audience:	 Software	 development	 teams,	 in	 particular	 the	 roles	 of	 Business	 Analyst,	
Product	Owner,	and	Development	Lead	

⇨	 Purpose	of	book:	Provide	advice	for	product	backlog	management	using	ALM	tools	
⇨	 Approach:	 Use	 a	 combination	 of	 storytelling	 and	 patterns/pattern	 sequences,	 focus	 on	 building	

understanding	(why)	and	providing	practical	advice	(how)	

Who	Will	Read	My	Patterns?:	Page	-	13	

	

	
Which	particular	book	a	person	selects	is	driven	by	recommendations	by	colleagues	and	friends,	e.g.	by	word	
of	mouth	from	someone	you	trust	and	who	knows	you	and	your	work.	Knowing	the	author	or	getting	exposed	
to	 the	author	as	a	 conference	speaker	also	drives	 the	choice.	Dealing	with	how	our	book	can	become	highly	
recommended	is	a	tough	challenge	for	us	to	plan	for!	But	we	can	at	least	select	a	book	title	that	makes	it	very	
clear	what	 the	 book	 is	 about	 (we	want	 the	 readers	 that	want	 our	 book).	Maybe	 a	 short	 title	with	 a	 longer	
subtitle?	Then,	a	short	and	crisp	introduction	that	quickly	takes	the	reader	into	the	material.	This	part	is	super	
important	–	it	needs	to	build	trust	quickly	that	we	have	the	knowledge,	that	we	present	it	plainly	and	simply,	
with	no	fuss,	but	enough	detail	that	the	advice	can	be	followed.	The	table	of	contents	is	a	way	to	tell	the	reader	
what	the	book	contains,	so	each	chapter	title	must	be	carefully	selected.		

⇨	 Title:	Magic	Backlog	–	a	guide	to	building	and	grooming	amazing	product	backlogs	
⇨	 TOC:	The	table	of	contents	is	designed	as	a	navigation	tool.	
⇨	 Outline:	The	 first	part	of	 the	book	can	be	seen	as	a	stand-alone	part	 that	spells	out	 the	main	concepts	

and	 who	 the	 book	 is	 for.	 Subsequent	 chapters	 move	 from	 the	 basic	 practices	 of	 structuring	 and	
navigation	 to	 providing	 insights	 from	 the	 backlog,	 backlog	 building	 and	maintenance,	 to	 backlogs	 for	
large	projects	and	programs.	This	way,	readers	can	stop	when	they	feel	they	have	enough	information.	
And	readers	can	come	back	to	more	advanced	practices	after	first	implementing	the	basic	ones.	

⇨	 Chapters	start	with	a	story	that	illustrates	the	use	of	the	patterns	in	that	section.	
	

Before	online	resources	were	common,	a	book	had	to	be	complete	in	providing	all	the	knowledge	it	could	about	
the	topics	it	covered.	Today,	a	book	can	be	a	part	of	an	overall	ecosystem	of	knowledge.	That	implies	that	the	
authors	must	decide	what	goes	in	the	book,	and	what	is	better	suited	to	be	covered	by	other	media.	That	said,	
the	book	also	needs	to	stand	on	its	own	and	be	complete	enough	to	not	depend	on	additional	resources	for	its	
core	goals.	The	length	of	the	book	can	be	kept	shorter	by	using	other	media	for	some	of	the	details.	Two	areas	
of	content	 that	are	particular	 importance	 to	us	as	we	are	writing	a	patterns	book:	 the	 full	patterns	and	how	
they	relate	to	implementation	examples.		

⇨	 Length:	reduce	length	of	book	by	using	other	media	for	full	patterns	
⇨	 Length:	reduce	length	of	book	by	using	other	media	for	detailed	implementation	examples	
⇨	 Design	the	book	as	part	of	an	ecosystem	that	can	grow	over	time	

8. DESIGN	OF	THE	BOOK	IN	RELATION	TO	OUR	PERSONAS	

Allison,	Caroline,	Taylor,	and	Nicolas	are	roles	that	match	our	target	audience.	We	believe	that	the	design	of	our	
book	addresses	their	needs	in	the	following	ways:	

Allison	is	a	busy	product	owner	for	a	complex	product	being	developed	by	distributed	teams.	To	Allison,	the	
title	intrigues	him.	More	important,	the	book	is	recommended	by	colleagues	and	his	initial	first-impression	is	
that	 the	book	 is	practical	and	useful.	His	attention	 is	 limited.	He	does	not	read	books	cover	 to	cover	(in	 fact,	
reading	a	book	that	is	attractively	laid	out	and	easy	to	grasp	an	overview	before	diving	in	and	then	skimming	is	
what	will	hold	his	attention.	He	likes	that	individual	chapters	of	the	book	mostly	stand	on	their	own	and	do	not	
rely	upon	successive	chapters.	Informative	illustrations	and	graphics	are	also	important.	

Caroline,	an	analyst,	is	mired	in	day-to-day	problems	at	work.	When	she	reads	a	book,	she	likes	to	absorb	it	
and	reflect	on	how	practices	it	describes	can	make	her	life	(and	that	of	her	co-workers)	better	right	away.	The	
book	connects	with	her	because	 it	contains	practical	advice	that	relate	to	her	current	problems	at	work.	She	
can	use	what	practices	are	of	immediate	use	and	refer	to	more	advanced	topics	as	she	needs	to.	The	book	isn’t	
an	all-or-nothing	book.	Being	an	avid	reader,	Caroline	also	appreciates	the	story-telling	aspect	of	the	book.	Not	
every	technical	practice	book	needs	to	be	a	dry	read	or	full	of	bulleted	items	and	checklists!		

Taylor	is	a	busy	project	manager	who	supports	process	improvements,	especially	if	they	are	practical	and	
grounded	 in	 real-world	 experience	 she	 can	 relate	 to.	 She	 likes	 the	 straightforward,	 pragmatic	 advice	 in	 this	
book:	based	on	your	situation,	here’s	where	you	could	start,	and	here’s	a	reasonable	way	 to	proceed.	Taylor	
appreciates	 that	not	every	business	situation	warrants	 the	same	approach	and	recognizes	 the	need	 to	adapt	
any	 practices	 to	 the	 current	 situation	 at	 hand	 (and	 that	 the	 business	 context	 is	 likely	 to	 evolve	 over	 time).	
Taylor	 appreciates	 that	 the	 book	 doesn’t	 gloss	 over	 subtleties	 or	 realities	 that	 are	 often	 entirely	 ignored	 or	
gloss	over	in	other	process	books.		

Nicolas,	a	relatively	new	analyst,	looks	for	practical	advice.	His	first	inclination	is	to	learn	new	practices	by	
observing	how	others	more	experienced	than	he	is,	actually	do	their	work.	He	likes	hearing	stories	about	how	

Who	Will	Read	My	Patterns?:	Page	-	14	

	

they	solved	problems	or	better	yet,	avoided	 them.	He	enjoys	watching	videos	and	short	presentations	about	
topics	he	 is	 interested	in.	 If	a	presentation	is	too	 long	he	does	not	hesitate	to	 fast	 forward	through	it	or	stop	
watching.	Sometimes	he	plays	videos	at	double	speed,	just	so	he	can	get	through	them	more	quickly.	He	likes	
controlling	 how	 he	 consumes	 information	 and	 finds	 the	 length	 and	 structure	 of	 a	 book	 daunting.	 He	 likes	
reading	 short	 blog	 posts	 and	 tips,	 but	 again,	 prefers	 browsing	 until	 he	 finds	 something	 that	 strikes	 him	 as	
interesting	or	potentially	useful.	He	will	dip	in	and	read	portions	of	a	book,	once	he	is	more	comfortable	with	
the	topic,	but	his	preferred	kind	of	book	is	an	online	one	where	he	can	clip	important	parts	and	drop	them	into	
his	note	keeper	app.	

9. DISCUSSION/CONCLUSION	

There	are	many	valuable	things	we	learned	in	the	process	of	writing	this	paper.	We	asked	for	feedback	from	
potential	readers	as	well	as	authors.	They	freely	shared	what	books	had	an	impact	on	them	and	why.	While	we	
can’t	plan	to	write	a	 timeless	best	seller,	we	now	know	that	we	need	to	more	 fully	understand	our	 intended	
readers	and	think	about	creative	ways	to	write	our	book	incrementally	and	test	it	out	on	potential	readers.	

We	 also	 came	 to	 appreciate	 that	 a	 well-designed	 book	 should	 have	 a	 central	 place	 in	 an	 information	
ecosystem	that	surrounds	 it.	 	But	books	these	days	don’t	stand	 in	 isolation.	Readers	and	 learners	 these	days	
expect	 support	 for	 different	 modes	 of	 learning	 and	 often	 prefer	 to	 consume	 online	 media,	 videos,	
presentations,	and	podcasts.	If	we	want	our	Magic	Backlog	patterns	to	have	a	broader	impact,	we	need	to	not	
only	write	a	book	that	appeals	to	our	targeted	audience,	but	also	create	multi-media	and	online	material	that	
supports	it.	

Finally,	as	we	were	crafting	our	personas	and	filling	in	some	details	of	their	stories,	our	suspicion	grew	that	
yes,	indeed,	we	likely	have	a	few	gaps	in	our	existing	patterns.	For	example,	our	patterns	are	focused	around	
backlog	changes	as	a	project	moves	through	the	lifecycle	and	the	business	needs	are	changing.	There	is	another	
kind	of	change	that	we	didn’t	directly	address	that	we	also	feel	is	important	to	address:	change	that	is	driven	by	
the	need	or	desire	to	improve	the	current	way	of	working.	This	also	led	us	to	realize	that	our	intended	readers	
could	 also	 benefit	 from	 some	 specific	 advice	 on	 how	 to	 introduce	 such	 changes	 (e.g.	 those	 particular	 to	
changing	existing	processes	and	restructuring	and	managing	a	backlog)	without	appearing	threatening	to	the	
organization	or	being	disruptive	to	ongoing	work5	.	This	will	need	to	be	addressed	as	we	work	on	the	book	and	
the	ecosystem	around	it,	and	most	likely	we	will	detect	more	areas	to	cover	as	we	work	our	way	through	this.	

10. ACKNOWLEDGEMENTS	

As	we	are	completing	this	paper,	we	need	to	express	our	gratitude	to	all	the	people	who	were	involved	along	
the	way	–	 our	 friends	 and	 colleagues	who	were	willing	 to	 share	 their	 opinions	 about	books,	 and	 those	who	
engaged	in	further	discussions,	the	authors	of	all	the	books	we	used	for	our	research	that	have	contributed	to	
this	amazing	body	of	knowledge	 that	we	all	benefit	 from,	and	 the	people	who	 influenced	 the	creation	of	 the	
personas	that	help	us	in	our	design	process.	A	very	warm	thank	you	goes	to	the	author	of	Fearless	Change	and	
our	shepherd	for	PLoP	2019,	Mary	Lynn	Manns	–	you	put	your	finger	very	nicely	and	ruthlessly	on	the	weakest	
points	of	our	work,	you	caused	us	long	discussions	and	major	rewrites,	and	with	your	coaching	we	could	take	
this	from	a	very	unfinished	work	to	something	that	we	hope	can	be	useful	to	our	audience.	We	also	appreciate	
the	 insightful	 feedback	 we	 got	 at	 the	 PLoP	 2019	 conference	 workshop	 that	 helped	 us	 further	 improve	 the	
paper	–	thank	you	to	all	the	workshop	participants.	
	
 	

5 Yes, we were inspired by Fearless Change patterns [MH], but suspect there are unique patterns for introducing backlog management changes into
organizations (depending on the role of the change agent and the nature of the project/product teams).

Who	Will	Read	My	Patterns?:	Page	-	15	

	

REFERENCES	
[Beck] Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.
[Bitt] Bittner, K. The Nexus Framework for Scaling Scrum: Continuously Delivering an Integrated Product with Multiple

Scrum Teams. Addison-Wesley, 2017.
[BM] Beyer, B. and Murphy, N. The Site Reliability Workbook: Practical Ways to Implement SRE. O’Reilly Media, 2018.
[Broo] Brooks, F. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition (2nd Edition), Addison-

Wesley, 1995.
[Busc] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. Pattern-Oriented Software Architecture: A System of

Patterns.Wiley, 1996.
[CH] Coplien, J. and Harrison, N. Organizational Patterns of Agile Software Development. Prentice Hall, 2004.
[Coc2001] Cockburn, A. Writing Effective Use Cases. Addison-¬Wesley, 2001.
[CBP] Caner, K., Bach J., and Pettichord, B. Lessons Learned in Software Testing: A Context-Driven Approach. Wiley, 2001.
 [CG] Crispin, L. and Gregory, J. Agile Testing: A Practical Guide for Testers and Agile Teams, Addison-Wesley, 2009.
[DeMa] DeMarco, T. The Deadline: A Novel about Project Management. Dorset House, 1997.
[FHK] Forsgren, N., Humble, J. and Kim, G. Accelerate: The Science of Lean Software and DevOps: Building and Scaling High

Performing Technology Organizations. IT Revolution Press, 2018.
[Fowl96] Fowler, M. Analysis Patterns: Reusable Object Models, Addison-Wesley, 1996.
[Fowl99] Fowler, M. et al. Refactoring: Improving the Design of Existing Code 1st Edition. Addison-Wesley, 1999.
[GHJV] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.
[GC] Goldratt, E. and Cox, J. The Goal: A Process of Ongoing Improvement. North River Press, 2014.
 [HT] Hunt, A. and Thomas, D. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley, 1999.
[Hva2015] Hvatum, L. and Wirfs-Brock, R. 2015. Patterns to Build the Magic Backlog. 20th European Conference on Pattern

Languages of Programming (EuroPLoP), EuroPLoP 2015, July 8-12 2015, 36 pages.
[Hva2017] Hvatum, L. and Wirfs-Brock, R. 2017. Pattern Stories and Sequences for the Backlog: Expanding the Magic Backlog

Patterns. 24th Conference on Pattern Languages of Programming (PLoP). PLoP 2017,October 23-25 2017, 26 pages.
[Hva2018] Hvatum, L. and Wirfs-Brock, R. 2018. Program Backlog Patterns: Applying the Magic Backlog Patterns. 23rd

European Conference on Pattern Languages of Programming (EuroPLoP). EuroPLoP 2018, July 4-8 2018, 22 pages.
[KBS] Kim, G., Behr, K., and Spafford, G. The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business Win, 5th

Anniversary edition, IT Revolution Press, 2018.
[KDWH] Kim, G., Debois, P., Willis, J., and Humble, J. The DevOps Handbook: How to Create World-Class Agility, Reliability,

and Security in Technology Organizations. IT Revolution Press, 2016
[Kell] Kelly, A. Business Patterns for Software Developers. Wiley, 2012.
[Kert] Kerth, N. Project Retrospectives: A Handbook for Team Reviews. Dorset House, 2001.
[LB] Larman, C. and Bodde, V. Large-Scale Scrum: More with LeSS. Addison-Wesley, 2016.
[MBCP] Murphy, N., Beyer, B., Jones, C., and Petoff, J. Site Reliability Engineering: How Google Runs Production Systems.

O’Reilly Media, 2016.
[McCo] McConnell, S. Code Complete: A Practical Handbook of Software Construction, Second Edition. Microsoft Press, 2004.
[MR] Manns, M. and Rising, L. Fearless Change: Patterns for Introducing New Ideas. Addison-Wesley, 2005
[Ries] Ries, E. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful

Businesses. Currency, 2011.
[Roth] Rothman, J. Agile and Lean Program Management: Scaling Collaboration Across the Organization. Practical Ink, 2016
[RW] Rozanski, N. and Woods, E. Software Systems Architecture: Working with Stakeholders Using Viewpoints and

Perspectives. Addison-Wesley 2005.
[SS], Schwaber, K. and Sutherland, J. The Scrum™ Guide The Definitive Guide to Scrum: The Rules of the Game. 2017.
[Wieg] Wiegers, K. Software Requirements 2nd Edition. Microsoft Press, 2009.
[Wir2016] Wirfs-Brock, R. and Hvatum, L. 2016. More Patterns for the Magic Backlog. 23rd Conference on Pattern Languages

of Programming (PLoP), PLoP 2016, Oct 24-26 2016, 18 pages
[Whit] Whittaker, J. How to Break Software: A Practical Guide to Testing. Pearson, 2002.
[WM] Wirfs-Brock, R. and McKean, A. Object Design: Roles, Responsibilities and Collaborations. Addison-Wesley, 2002.
[WWW] Wirfs-Brock, R., Wilkerson, B., and Wiener, L. Designing Object-Oriented Software. Prentice-Hall, 1990.

 	

Who	Will	Read	My	Patterns?:	Page	-	16	

	

APPENDIX	A:	THE	BOOKS	

This	appendix	presents	an	overview	of	the	books	that	we	selected	to	analyze,	each	with	a	short	description.	We	
grouped	 the	books	 into	 the	 following	 categories:	 fundamental	 books,	 books	on	 specific	 processes,	 books	 for	
specific	professions	within	the	software	industry,	books	on	DevOps	(representing	a	hot	topic),	patterns	books,	
and	business	books.	

Fundamental	books	

These	books	 are	 classics	 in	 the	 software	domain,	 books	 that	many	 software	professionals	 know	of	 and	 look	
upon	as	a	fundamental	part	of	a	proper	software	education	that	include	some	understanding	of	the	history	of	
software	development.		
− The	Mythical	Man	Month	by	Fred	Brooks	is	a	collection	of	essays	on	software	engineering	and	was	first	

published	in	1975,	with	a	second	edition	in	1982	and	a	third	edition	in	1995.	The	lessons	learned	and	the	
insights	provided	in	these	essays	have	mostly	stood	the	test	of	time	and	most	of	this	book	is	as	valid	today	
as	it	was	when	first	published.	The	topics	are	about	software	development	processes	on	a	conceptual	level	
that	do	not	depend	on	a	particular	software	process,	and	about	human	nature.	

− Software	 Requirements	 by	 Karl	 Wiegers	 and	 Joy	 Beatty	 provides	 a	 fundamental	 understanding	 of	
software	requirements	and	 their	 characteristics.	The	 third	edition	was	published	 in	2013,	while	 the	 first	
edition	 dates	 back	 to	 1999.	 The	 tables	 with	 quality	 characteristics	 for	 requirements	 and	 requirements	
collections	are	just	as	valid	and	valuable	today	as	they	were	in	1999.	

− The	 Deadline:	 A	 Novel	 about	 Project	 Management	 by	 Tom	 DeMarco	 tells	 the	 story	 of	 a	 software	
manager	who	is	downsized	but	then	is	kidnapped	to	an	imaginary	country	and	gets	the	opportunity	to	test	
out	project	management	principles	 in	a	 large	scale	experiment.	By	choosing	the	novel	 format,	 the	author	
makes	this	an	entertaining	read,	and	since	this	is	a	type	of	storytelling	it	is	easier	to	remember	the	advice	
given	on	 a	number	of	 topics.	 Some	of	 the	process	 thinking	has	 evolved	 since	 the	book	was	published	 in	
2011,	without	that	making	the	book	less	of	a	recommended	read.	

− Retrospectives	 by	 Norm	 Kerth	 is	 the	 first	 book	 about	 doing	 retrospectives,	 and	 although	 some	 of	 the	
thinking	is	a	bit	out	of	touch	with	today’s	business	reality	(like	an	off-site	3	day	event),	and	it	is	missing	the	
idea	of	heartbeat	 retrospectives,	 it	 is	 still	 the	primary	 retrospective	book	 that	 lays	 the	 foundation	of	 the	
practice	not	least	from	the	perspective	of	the	philosophy	of	reflection	and	trust.	

Books	on	specific	processes	and	methods	

Every	 software	 methodology	 has	 its	 core	 documentation,	 and	 here	 we	 have	 selected	 a	 few	 representative	
items.	
− Extreme	 Programming	 Explained	 by	 Kent	 Beck	 first	 published	 in	 1999	 is	 the	 fundamental	 XP	 guide	

describing	engineering	practices	 like	unit	testing,	continuous	refactoring,	and	continuous	integration	that	
have	had	a	profound	influence	on	all	agile	methodologies.	

− The	Scrum	Guide	by	Ken	Schwaber	and	Jeff	Sutherland	is	according	to	the	authors	the	definitive	guide	to	
Scrum,	and	they	make	it	freely	available	on	its	own	web	site	independent	of	any	commercial	interests.	This	
writing	 is	 a	 short	 and	 very	 specific	 description	 of	 how	 Scrum	works	 that	 should	 be	 a	must	 read	 to	 any	
member	of	a	Scrum	team.	First	published	in	2010,	it	would	also	classify	as	a	fundamental	work.	

− The	 Nexus	 Framework	 by	 Kurt	 Bittner,	 Patricia	 Kong	 and	 Dave	West	 tackles	 the	 scaling	 of	 Scrum	 to	
handle	multiple	Scrum	teams	working	from	one	product	backlog	(e.g.	program	level	methodology).	It	 is	a	
short	book	that	follows	the	crisp	and	“less	is	more”	style	of	the	Scrum	Guide.		

− Large-Scale	Scrum	by	Craig	Larman	and	Bas	Vodde	is	their	version	of	a	multi-team	Scrum	methodology.	
This	book	provides	more	insights	in	the	goals	and	“why’s”	than	the	short	Nexus	documentation.	

− Writing	Effective	Use	Cases	by	Alistair	Cockburn	was	THE	book	about	use	cases,	and	for	those	that	 feel	
that	 the	 limitation	 of	 user	 stories	 is	 not	 quite	 enough	 to	 really	 understand	 users	 interaction	with	 their	
product	this	is	still	a	very	useful	book.	

 	

Who	Will	Read	My	Patterns?:	Page	-	17	

	

Books	for	specific	professions	(architects,	developers,	and	testers)	

The	processes	and	methods	in	these	books	are	mostly	on	the	level	of	the	individual	developer.		
− Code	Complete	 by	 Steve	McConnell	 is	 a	 highly	 recognized	 guide	 to	 developers.	 The	 second	 edition	was	

published	in	2004,	(TBD)	
− The	Pragmatic	Programmer	by	Andrew	Hunt	and	David	Thomas	was	first	published	in	1999,	and	it	has	

tips	and	practices	for	software	engineering	(not	a	consistent	methodology).	A	second	edition	is	coming	this	
year.	

− Refactoring	by	Martin	Fowler	addresses	ways	to	deal	with	legacy	code.		
− Agile	 Testing	 by	 Lisa	 Crispin	 and	 Janet	 Gregory	 is	 an	 essential	 guide	 for	 how	 the	 role	 of	 testing	 is	

integrated	in	agile	teams.		
− How	 to	 Break	 Software	 by	 James	 Whittaker	 has	 a	 number	 of	 testing	 techniques	 to	 attack	 software	

products	 in	 a	 systematic	 way.	 It	 is	 short	 and	 very	 practical,	 and	 written	 in	 a	 fun	 way	 following	 the	
philosophy	of	the	exploratory	testing	community	seeing	testing	as	an	intellectual	activity.	

− Lessons	Learned	 in	 Software	Testing	 by	Cem	Kaner,	 James	Bach,	 and	Bret	Pettichord	 is	 another	book	
from	authors	that	are	thought	leaders	within	exploratory	testing.	It	contains	practical	testing	techniques	as	
well	as	the	ways	of	thinking	as	a	tester.	

− Software	Systems	Architecture	by	Nick	Rozanski	and	Eoin	Woods	 is	a	book	that	provides	a	 framework	
for	designing	and	documenting	relevant	views	of	architecture.	

DevOps	books	

Since	DevOps	is	the	buzzword	these	days	and	we	have	read	some	of	the	books	on	the	topic	we	include	this	to	
represent	current	writings.	
− The	Phoenix	Project	 by	Gene	Kim,	Kevin	Behr,	 and	George	Spafford	 is	written	 as	 a	novel	 following	 the	

story	 of	 an	 IT	manager	who	 is	 given	 90	 days	 to	 turn	 around	 his	 company’s	work	 processes	 to	 improve	
product	delivery	(e.g.	DevOps).	

− The	DevOps	Handbook	by	Gene	Kim,	Jez	Humble,	Patrick	Debois,	and	John	Willis	is	the	companion	to	the	
Phoenix	 Project	 that	 covers	 the	 workflows	 and	methodology	 that	 emerges	 in	 the	 novel	 in	 a	 systematic	
fashion.	

− Site	Reliability	Engineering	edited	by	Betsy	Beyer	et.	al.	is	a	collection	of	essays	and	articles	by	multiple	
authors	that	describe	the	DevOps	approach	within	the	Google	organization.		

− The	Site	Reliability	Workbook	edited	by	Betsy	Beyer	et.	al.	 is	describing	how	the	Google	SRE	is	done	in	
practice	within	Google	and	other	organizations	that	are	implementing	SRE	based	on	the	Google	model.	

− Accelerate	by	Nicole	Forsgren,	Jez	Humble,	and	Gene	Kim	is	based	on	their	research	when	doing	the	State	
of	 DevOps	 reports	 from	 2014	 to	 2017.	 It	 provides	 an	 empirical	 study	 of	 the	 effectiveness	 of	 DevOps	
practices.	

Patterns	books	

− Design	 Patterns	 by	 Eric	 Gamma,	 Richard	 Helm,	 Ralph	 Johnson,	 and	 John	 Vlissides	 is	 the	 fundamental	
classic	of	software	design	patterns	containing	23	documented	patterns.		

− The	 POSA	 Series	 by	 Frank	 Buschmann	 et.	 al.	 are	 six	 books	 that	 focus	 on	 pattern-oriented	 software	
architecture.	

− Analysis	Patterns	 by	Martin	 Fowler	 focuses	 on	 patterns	 for	 business	 processes	 and	 the	 architecture	 of	
domain	specific	systems.	

− Domain-Driven	Design	 by	Eric	Evans	 focuses	on	patterns	 for	 identifying	 the	core	business	process	and	
developing	a	common	language	among	business	experts	and	developers	who	create	software	that	supports	
the	business.	

− Organizational	 Patterns	 of	 Agile	 Software	 Development	 by	 Jim	 Coplien	 and	 Neil	 Harrison	 provides	
patterns	for	software	process	based	on	an	extensive	study	of	high-performing	teams.	

Who	Will	Read	My	Patterns?:	Page	-	18	

	

− Fearless	 Change	 by	 Mary	 Lynn	 Manns	 and	 Linda	 Rising	 is	 a	 patterns	 book	 but	 also	 a	 business	 book,	
presenting	patterns	to	introducing	change	in	an	organization	from	a	grassroot	level.		

− Business	 Patterns	 for	 Software	 Developers	 by	 Allan	 Kelly	 is	 also	 a	 patterns	 book	 within	 a	 business	
context.	It	is	aimed	at	roles	that	are	considering	starting	businesses	in	the	software	industry	whether	doing	
consulting	or	selling	software	products.	

Business	books	

There	are	business	books	that	are	written	by	software	professionals	and/or	targeting	software	organizations,	
and	also	general	business	books	that	have	gained	popularity	in	the	software	community:	
− Agile	 and	 Lean	 Program	 Management	 by	 Johanna	 Rothman	 is	 a	 thorough	 Guide	 for	 creating	 and	

managing	software	programs	(e.g.	multiple	projects	working	together	to	deliver	a	product).	
− The	Goal	by	Eli	Goldratt	is	now	available	in	its	fourth	edition.	First	published	in	1984,	the	novel	follows	a	

manufacturing	 manager	 demanded	 to	 turn	 around	 productivity	 at	 the	 factory	 site	 he	 is	 managing.	 The	
Phoenix	project	 is	written	 following	 the	same	recipe	but	 focusing	on	software	product	deliver	 instead	of	
the	delivery	of	good.	In	both	books	the	manager	is	helped	by	a	role	working	as	a	hands-off	coach.		

− The	Lean	Startup	by	Eric	Ries	is	inspired	by	lean	manufacturing	ideas	and	is	focused	on	entrepreneurial	
management	based	on	short	product	development	cycles	and	rapid	validation	by	customers.	

 	

Who	Will	Read	My	Patterns?:	Page	-	19	

	

APPENDIX	B:	DESIGN	PRINCIPLES	FOR	SOFTWARE	PROCESS	BOOKS	

This	 is	 the	 complete	 list	 of	 principles	 for	 designing	 software	 process	 books	 that	 we	 found	 through	 the	
combination	of	reviewing	books	and	analyzing	feedback	from	readers	and	authors.	The	ones	that	we	applied	in	
the	chapter	on	designing	our	book	are	marked	with	an	asterisk	(*).	

They	are	not	listed	in	a	particular	order,	but	we	tried	to	group	them	to	have	a	natural	flow.	We	also	added		
some	 thoughts	 around	 how	 to	 apply	 the	 principle,	 added	 quotes	 from	 the	 feedback	 where	 applicable,	 and	
provide	examples	of	books	that	apply	the	principle.		
BRING	SOMETHING	TO	THE	TABLE	

There	should	be	a	reason	to	write	a	book,	more	than	the	desire	of	the	writer	to	be	an	author.	If	your	idea	of	a	
book	does	not	bring	any	new	knowledge	or	perspective,	or	at	least	provides	a	systematic	and	useful	and	well-
written	combination	of	information	that	is	already	documented	elsewhere,	you	should	ask	yourself	if	you	really	
should	spend	time	writing	a	book.		

“For	me	to	continue	to	read	a	software	process	book,	it	has	to	be	providing	me	new	information.	It	
needs	to	be	challenging	the	way	I	think	and/or	do	things.”	

“it	gives	me	insights	I	have	failed	to	collect	myself”	

“I	 get	my	 technical	 knowledge	 from	 reference	manuals	 and	 online	 examples.	 The	 books	 give	me	
more	of	a	deeper	understanding	or	"wisdom".”	

Books	that	provide	value	on	known	topics:	Writing	effective	use	cases,	Lessons	Learned	in	Software	Testing	
FOCUS	ON	GOALS	NOT	ON	TASKS	

This	 is	not	only	good	advice	when	writing	user	manuals,	but	also	when	dealing	with	software	processes	and	
practices.	Good	pattern	names	typically	follow	this	advice,	it	is	not	so	much	about	specifically	what	to	do	but	on	
what	you	want	to	achieve	(e.g.	focus	on	why	and	how	to	generate	a	desired	result).	Failing	applications	of	agile	
processes	are	 falling	 in	 the	trap	of	 focusing	on	tasks;	e.g.	doing	described	practices	but	 failing	to	understand	
and	achieve	the	purpose.	

“Books	need	to	be	to	the	point	and	implementable	[…]	If	I	have	enough	backing	as	to	why	principles	
or	ideas	work,	I	can	also	sell	them	more	easily	in	my	organization”	

“I	read	books	that	solve	a	specific	problem”	

“My	 recommendations	 for	 this	 is	 because	 it's	 a	 "why"	 book.	 It	 explains	 why	we	want	 to	 certain	
practices.	Not	how	to	do	them,	but	why	to	do	them.”	

Books	that	focus	on	the	goals:	Business	Patterns,	The	Pragmatic	Programmer	
	

DON’T	MAKE	ME	READ	THE	WHOLE	BOOK*	

Some	 books	 have	 an	 introductory	 part	 that	 gives	 an	 overview	 and	 general	 understanding	 of	 the	 contents.	
Following	chapters	then	go	deeper	into	the	various	concepts,	and	there	is	a	guide	in	the	overview	section	that	
clarifies	 what	 chapters	 are	 covering	 what	 content.	 This	 means	 that	 readers	 who	 mainly	 want	 a	 general	
understanding	 can	 get	 away	 with	 reading	 maybe	 the	 first	 40-50	 pages.	 Readers	 who	 are	 familiar	 with,	 or	
particularly	interested	in,	parts	of	the	material	can	choose	what	chapters	to	read.	In	some	cases	each	chapter	is	
also	structured	in	an	overview	section	and	then	going	deeper.		

“[…]	in	general	I’m	not	a	big	fan	of	reading	books.	I	don’t	really	have	the	patience	for	it”	

“It	is	possible	to	get	lots	of	benefit	from	that	book	without	reading	all	of	it”	

Books	 with	 a	 first	 part	 introducing	 the	 concepts:	 Domain-Driven	 Design,	 Agile	 Testing,	 Software	 Systems	
Architecture	
PROVIDE	A	CONTENT	MAP*		

Helping	 the	 reader	 understand	 the	 structure	 and	 flow	of	 the	 book	will	 help	 them	 access	 the	 contents	more	
successfully.	A	reader	may	be	specially	interested	in	a	subset	of	the	total	contents,	 for	example	not	yet	ready	
for	more	advanced	practices	but	wanting	to	find	basic	practices	to	try.	That	reader	may	return	later	for	more	

Who	Will	Read	My	Patterns?:	Page	-	20	

	

challenging	 concepts.	 Any	 book	 that	 serves	 as	 a	 reference	 for	 people	 needs	 to	 support	 reader	 navigation.	 A	
book	may	become	a	reference	for	an	individual	even	if	the	author	did	not	plan	for	this,	so	this	principle	should	
always	be	on	the	authors	mind.	Headings	and	table	of	contents	(TOC)	are	important	navigational	tools.	Special	
care	should	be	placed	on	 the	chapter	 titles	and	sub-titles	as	 they	appear	 in	 the	TOC	creating	a	content	map.	
Title	 terminology	should	be	 from	the	users	domain	 if	possible,	 so	 that	concepts	do	not	have	 to	be	explained	
before	the	TOC	can	be	understood,	and	focus	on	the	users	goals.	A	flat	structure	is	usually	easier	to	navigate.	If	
topics	are	 self-contained,	 and	 follow	a	natural	 flow	of	 introduction	and	 learning,	 the	 reader	will	not	have	 to	
move	back	and	forth	in	the	book.	

“The	text	on	the	title	mentioned	a	few	technical	practices	I	follow	[...]	I	knew	I	had	to	read	it.”	

“As	much	as	I	was	interested	in	the	big	picture,	I	was	also	looking	for	details	[…]	without	spending	
too	much	time	reading	it.”	

Books	that	are	easy	to	navigate:	How	to	Break	Software,	Accelerate	
STORIES	ARE	GOOD*	

The	telling	of	stories	is	fundamental	in	the	human	history	as	a	way	of	sharing	ideas	and	knowledge.	It	is	hard	to	
remember	bullet	points	on	a	slide,	or	a	list	in	a	book,	but	we	remember	stories	that	speak	to	us.	Stories	that	feel	
real,	with	events	and	characters	that	the	reader	can	relate	to,	also	help	to	build	trust	between	the	reader	and	
the	author.		Stories	that	are	well	composed	are	an	easier	read	than	technical	text.	That	is	also	a	challenge	–	not	
everyone	 is	good	at	 creating	or	 finding	stories.	Writing	a	novel	 to	provide	software	process	 insights	 is	a	 tall	
task,	but	storytelling	can	also	be	done	by	smaller	stories	woven	together	into	a	whole,	with	the	story	and	the	
technical	 contents	 alternating	 through	 the	 book.	 Some	 authors	 include	 story	 snippets,	 either	 as	 lead-ins	 to	
chapters	or	short	breaks	in	the	action	to	reinforce	a	concept	or	practice.	Some	of	these	stories	may	be	gleaned	
from	experiences	other	than	the	authors.6		

“I	loved	the	way	it	described	how	DevOps	works,	because	it	nicely	applies	storytelling”	

Ultimate	storytelling	in	books:	The	Deadline,	The	Goal,	The	Phoenix	Project	(novels)	
Books	with	stories:	Agile	Testing,	Fearless	Change,	Large-Scale	Scrum	
	

ILLUSTRATIONS	THAT	MAKE	SENSE		

Illustrations	are	important	for	several	reasons.	They	give	a	different	way	to	document	and	so	complement	the	
text.	Use	 them	as	alternatives	 to	 text.	Lighten	up	 the	reading.	Must	make	sense	and	 fit	 I	 the	 flow.	Place	 then	
where	the	 illustration	 is	discussed	and	always	do	discuss	 the	 illustration.	Make	sure	 it	 is	easy	to	understand	
and	that	it	complements	the	text.	

“[to	choose	a	book]	Style:	text+	pictures+	illustrations,	easy	to	read/fluid”	

“provide	visual	cues	[…]	which	help	readers	understand	and	remember	the	content.	I	lean	strongly	
on	books	which	leverage	visual	models	as	a	communication	tool	to	support	software	processes	and	
practices”	

Books	with	informative	illustrations:	Large-Scale	Scrum,	Project	Retrospectives	
CONSISTENT	VOICE	AND	VOCABULARY		

Books	written	by	multiple	authors	often	suffer	not	only	the	changes	in	style	from	one	author	to	the	other,	but	
also	 in	 being	 inconsistent	 in	 terminology	 and	 the	 application	 of	 practices.	 The	 role	 of	 the	 editor	 is	 really	
important	in	this	situation.	Especially	some	of	the	later	(hot	topic)	books	suffer	from	groups	of	authors	writing	
individual	chapters.	This	is	great	in	bringing	in	experience	and	viewpoints	from	multiple	sources,	but	it	has	a	
challenge	because	of	the	variances	between	companies	and	organizations	in	terminology	and	implementation	
of	practices.	

6 Another pattern for story-as-inspiration, that I, Rebecca used when writing Object Design, was to lead in each chapter with a short couple of
paragraphs introducing a short interlude about design, or design thinking from a totally different context (e.g. what painters or writers or
Christopher Alexander said about a somewhat-related topic). This was then followed by a couple of sentence lead-in to the upcoming chapter. This
was hard to do and took a lot of effort to find the right story and then to write about how it related to the chapter. But it was absolutely essential to
writing the chapter (and I found I couldn’t really start writing the chapter until I had identified this story).

Who	Will	Read	My	Patterns?:	Page	-	21	

	

“use	[the	book]	to	establish	a	common	vocabulary	and	shared	mindset	with	colleagues”	

Books	 by	 multiple	 authors	 that	 are	 consistent:	 Fearless	 Change,	 Organizational	 Patterns	 of	 Agile	 Software	
Development	
LIMIT	REPETITION		

This	should	be	an	evident	 thing	to	remove	when	a	draft	reaches	an	editor,	but	we	have	encountered	several	
technical	books	of	300	pages	or	more	that	would	have	done	better	staying	below	200	pages.	Note	that	some	
repetition	can	be	done	by	design,	as	 it	 is	known	that	 it	can	help	the	reader	remember.	But	 then	 it	should	be	
done	by	chapter	summaries	and	not	by	what	seems	to	be	verbose	sections	with	little	content.	

“Entire	content	of	the	book	can	be	told	in	two	articles.	Instead	the	book	has	400	pages	with	lot	of	
redundancy.”	

Books	that	avoid	repetition:	Software	Requirements,	Agile	Testing	
SHORTER	IS	BETTER		

Length	 is	related	to	the	principle	of	 limiting	repetition,	but	goes	further	 in	not	 just	trying	to	avoid	repetition	
but	 in	keeping	sentences	short	and	specific,	and	mercilessly	cutting	out	content	that	 is	not	required	to	assist	
the	reader.	The	Scrum	Guide	is	a	good	example	where	you	get	the	feeling	that	every	word	and	every	sentence	is	
carefully	selected	and	created,	and	there	is	no	fluff	or	part	that	is	not	deliberately	included.	

“Books	with	fluff	to	increase	page	count	or	no	coherent	narrative.”	

Books	that	are	short	and	concise:	The	Scrum	Guide,	The	Nexus	Framework	
SIMPLER	IS	BETTER	

Deal	with	complex	contents	by	careful	structuring	and	by	introducing	concepts	gradually,	using	examples	and	
stories	 to	 help	 the	 understanding.	 Stating	 ideas	 in	 simpler	 ways	 takes	 time	 and	 editing	 skill,	 but	 when	
undertaking	the	significant	workload	of	creating	a	book	it	is	sad	if	that	effort	is	wasted	because	the	readers	are	
not	getting	the	insights.	Do	not	complicate	to	show	off.	This	may	be	more	frequent	 in	academic	writings,	but	
sometimes	one	can	get	the	impression	that	the	author	wants	to	show	off	their	cleverness	to	their	readers.		

“[I	do	not	like]	books	with	fluff	to	increase	page	count”	

Books	that	are	straightforward	and	easy	to	read:	Large-Scale	Scrum,	Business	Patterns	for	Software	Developers	
HAVE	A	PERSONAL	VOICE	

As	an	author	one	should	not	be	afraid	of	making	the	writing	personal	while	still	showing	respect	for	the	reader.	
Maybe	the	right	voice	is	professionally	personal	–	not	including	stories	involving	family	and	friends	but	rather	
focusing	on	personal	experience	as	a	software	professional,	and	always	considering	if	telling	a	story	is	working	
towards	the	goal	of	making	the	contents	more	accessible	to	the	user.	A	personal	style	tends	to	be	less	dry	and	
more	entertaining,	and	it	lends	credibility	to	the	contents.	

“I	 really	 like	 the	 books	 of	 authors	 I	 personally	 know	 (and	 like).	 	 I	 sort	 of	 feel	 like	 the	 author	 is	
talking	to	me.”	

Books	with	a	personal	approach:		Project	Retrospectives,	Fearless	Change	
SHARE	THE	EXCITEMENT	

This	one	 is	difficult.	Technical	 stuff	 is	by	nature	 rather	boring,	 so	how	 to	not	bring	your	 reader	 to	 sleep?	 In	
most	cases	the	book	turns	out	to	be	more	attractive	to	read	if	there	is	a	genuine	feeling	that	the	author	cares	
deeply	about	the	contents.	This	can	be	done	by	sharing	some	personally	experienced	situation,	or	by	sidebars	
with	additional	insights.	This	also	breaks	up	the	monotony	of	the	text.		

When	the	author	is	excited	about	the	topic,	the	book	typically	avoids	harping	on	negative	issues.	It	is	better	
to	focus	on	what	is	working	and	how	to	get	to	the	desired	outcome	than	to	spend	paragraph	upon	paragraph	
about	bad	practices.	It	is	often	more	helpful	to	know	what	to	do	than	to	know	what	to	avoid,	and	an	author	that	
keeps	on	and	on	about	negative	topics	will	quickly	 lose	the	reader.	On	the	other	hand,	what	might	go	wrong	
(and	how	to	remedy	 it)	can	be	useful.	One	way	to	rephrase	 this	kind	of	 information	 is	 to	describe	signals	or	
signs	that	things	are	working	well.	

Who	Will	Read	My	Patterns?:	Page	-	22	

	

“I	have	a	particular	liking	to	books	with	stories	and	jokes.	These	books	can	really	keep	me	engaged.	
If	the	entire	book	is	dry	and	technical,	it	can	be	hard	to	keep	my	attention”	

Books	that	feel	engaged:	Agile	Testing,	The	Lean	Startup	
AVOID	MARKETING	

Books	 from	 authors	 should	 avoid	 marketing	 hype	 or	 overselling	 the	 benefits	 of	 practices.	 Readers	 are	 not	
happy	to	invest	time	in	what	turns	out	to	be	a	sales	pitch	or	promoting	a	consulting	business,	or	when	the	book	
seems	to	be	something	it	is	not	just	to	boost	sales.	

“…	 like	 they	 stuck	 the	 word	 patterns	 in	 the	 title,	 but	 there	 was	 little	 in	 the	 book	 that	 was	
recognizable	to	the	patterns	community	as	a	pattern.		There	may	have	been	good	stuff	in	there,	but	I	
never	got	over	what	felt	like	false	advertising	to	me”		

“Books	 written	 for	 the	 wrong	 reasons	 (marketing	 of	 company,	 or	 joining	 the	 hype	 bandwagon	
without	proper	experience	in	the	topic)”	

“Actually,	there	is	a	genre	of	books	which	I	don't	like	which	seem	to	be	the	"Hay	this	is	great,	if	you	
do	it	my	way	it’s	great,	company	X	did	this	and	...,	company	Y	did	this	and...	"	but	they	never	actually	
tell	you	what	they	did,	just	what	the	result	was”	

Books	that	avoid	the	marketing	feel:		The	Nexus	Framework,	The	DevOps	Handbook	
DO	NOT	TRY	TO	SEEM	ALMIGHTY	

Readers	appreciate	a	 certain	 level	of	humility	 in	 the	author.	Yes,	 they	want	 to	 feel	 confident	 that	 the	author	
knows	her	stuff.	But	they	trust	more	when	the	person	provides	valuable	insights	but	still	is	aware	that	there	is	
more	to	learn	and	that	every	situation	brings	unique	challenges.	People	seem	to	really	dislike	reading	software	
process	books	that	declare	that	their	practices	are	the	only	viable	ones	and	are	not	open	for	interpretation	and	
discussion.	

“Or	if	the	author	does	not	have	humility	to	recognize	that	there	is	a	lot	he	does	not	know,	I	will	often	
be	disappointed.”	

Books	from	knowledgeable	authors	with	a	humble	feel:	Retrospectives,	Software	Requirements	

